ME 313 Heat Transfer

CHAPTER 2 EXAMPLES

1) A cylinder of radius r_0 , length L, and thermal conductivity k is immersed in a fluid of convection coefficient h and unknown temperature T_{∞} . At a certain instant the temperature distribution in the cylinder is $T(r) = a + br^2$, where a and b are constants. Obtain expressions for the heat transfer rate at r_0 and the fluid temperature.

KNOWN: Temperature distribution in solid cylinder and convection coefficient at cylinder surface.

FIND: Expressions for heat rate at cylinder surface and fluid temperature.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Steady-state conditions, (3) Constant properties.

ANALYSIS: The heat rate from Fourier's law for the radial (cylindrical) system has the form

$$q_r = -kA_r \frac{dT}{dr}.$$

Substituting for the temperature distribution, $T(r) = a + br^2$,

$$q_r = -k(2\pi rL) 2br = -4\pi kbLr^2$$
.

At the outer surface ($r = r_0$), the conduction heat rate is

$$q_{r=r_0} = -4\pi kbLr_0^2.$$

From a surface energy balance at $r = r_0$,

$$q_{r=r_o} = q_{conv} = h(2\pi r_o L) [T(r_o) - T_\infty],$$

<

Substituting for $q_{r=r_0}$ and solving for T_{∞} ,

$$T_{\infty} = T(r_{O}) + \frac{2kbr_{O}}{h}$$

$$T_{\infty} = a + br_0^2 + \frac{2kbr_0}{h}$$

$$T_{\infty} = a + br_0 \left[r_0 + \frac{2k}{h} \right]$$

<i>(</i> 2)		
	Consider an aluminum pan used to cook stew on top of an electric range. The m section of the pan is $L = 0.25$ cm thick and has a diameter of $D = 18$ cm. The	
	ric heating unit on the range top consumes 900 W of power during cooking, and	
	ent of the heat generated in the heating elements transferred to the pan. During	
	tion, the temperature of the inner surface of the pan is measured to be 108 °C	
Assun	ming temperature-dependent thermal conductivity and one dimensional heat	
	fer, express the mathematical formulation (the differential equation and the	
	dary conditions) of this heat conduction problem during steady operation. Do	not
solve.		<u> </u>
	Alaminum pan	ļ
	The state of the s	
	111011111	
	FIGURE P2-47	
	at conduction through the bottom section of an aluminum pan that is used to cook stew on top o	
range is c mathemat	considered (Fig. P2-47). Assuming variable thermal conductivity and one-dimensional heat table to titical formulation (the differential equation and the boundary conditions) of this heat conduction	transter, the n problem is
	ained for steady operation.	
	tions 1. Heat transfer is given to be steady and one-dimensional. 2. Thermal conductivity is	
	3. There is no heat generation in the medium. 4. The top surface at $x = L$ is subjected ure and the bottom surface at $x = 0$ is subjected to uniform heat flux.	to specified
-	The heat flux at the bottom of the pan is	
	$\dot{Q}_{\rm f}$ \dot{G} 0.90 × (900 W) $_{21821}$ $_{21}$ $_{22}$	
•	$\dot{q}_s = \frac{\dot{Q}_s}{A_s} = \frac{\dot{G}}{\pi D^2 / 4} = \frac{0.90 \times (900 \text{ W})}{\pi (0.18 \text{ m})^2 / 4} = 31,831 \text{ W/m}^2$	
Then the	differential equation and the boundary conditions	
for this he	neat conduction problem can be expressed as	

 $\frac{d}{dx} \left(k \frac{dT}{dx} \right) = 0$ $-k \frac{dT(0)}{dr} = \dot{q}_s = 31,831 \text{ W/m}^2$ $T(L) = T_L = 108^{\circ}\text{C}$

solution

A steam pipe is subjected to convection on the inner surface and to specified temperature on the outer surface. The mathematical formulation, the variation of temperature in the pipe, and the rate of heat loss are to be determined for steady one-dimensional heat transfer.

Assumptions 1 Heat conduction is steady and one-dimensional since the pipe is long relative to its thickness, and there is thermal symmetry about the center line. 2 Thermal conductivity is constant. 3 There is no heat generation in the pipe.

Properties The thermal conductivity is given to be $k = 7.2 \text{ Btu/h} \cdot \text{ft} \cdot \text{°F}$.

Analysis (a) Noting that heat transfer is one-dimensional in the radial r direction, the mathematical formulation of this problem can be expressed as

and
$$\frac{d}{dr} \left(r \frac{dT}{dr} \right) = 0$$
$$-k \frac{dT(r_1)}{dr} = h[T_{\infty} - T(r_1)]$$
$$T(r_2) = T_2 = 160^{\circ} F$$

(b) Integrating the differential equation once with respect to r gives

$$r\frac{dT}{dr} = C_1$$

Dividing both sides of the equation above by r to bring it to a readily integrable form and then integrating,

$$\frac{dT}{dr} = \frac{C_1}{r}$$
$$T(r) = C_1 \ln r + C_2$$

where C_1 and C_2 are arbitrary constants. Applying the boundary conditions give

$$r = r_1$$
: $-k\frac{C_1}{r_1} = h[T_{\infty} - (C_1 \ln r_1 + C_2)]$
 $r = r_2$: $T(r_2) = C_1 \ln r_2 + C_2 = T_2$

Solving for C_1 and C_2 simultaneously gives

$$C_1 = \frac{T_2 - T_{\infty}}{\ln \frac{r_2}{r_1} + \frac{k}{hr_1}} \quad \text{and} \quad C_2 = T_2 - C_1 \ln r_2 = T_2 - \frac{T_2 - T_{\infty}}{\ln \frac{r_2}{r_1} + \frac{k}{hr_1}} \ln r_2$$

Substituting C_1 and C_2 into the general solution, the variation of temperature is determined to be

	$T(r) = C \log_{r} T$ $C \log_{r} C C$	
	$T(r) = C_1 \ln r + T_2 - C_1 \ln r_2 = C_1 (\ln r - \ln r_2) + T_2 = \frac{T_2 - T_{\infty}}{\ln \frac{r_2}{r_1} + \frac{k}{hr_1}} \ln \frac{r}{r_2} + T_2$	
	(160 – 250)°F	
	$= \frac{(160 - 250)^{\circ}F}{\ln\frac{2.4}{2} + \frac{7.2 \text{ Btu/h} \cdot \text{ft} \cdot ^{\circ}F}{(12.5 \text{ Btu/h} \cdot \text{ft}^{2} \cdot ^{\circ}F)(2/12 \text{ ft})}} \ln\frac{r}{2.4 \text{ in}} + 160^{\circ}F = -24.74 \ln\frac{r}{2.4 \text{ in}} + 160^{\circ}F$	
	2 $(12.5 \text{ Btu/h} \cdot \hat{\pi}^2 \cdot \hat{r})(2/12 \hat{\pi})$	
	(c) The rate of heat conduction through the pipe is	·
	$\dot{Q} = -kA \frac{dT}{dr} = -k(2\pi r L) \frac{C_1}{r} = -2\pi L k \frac{T_2 - T_{\infty}}{\ln \frac{r_2}{r_1} + \frac{k}{hr_1}}$	
	$\frac{1}{r_1} + \frac{1}{hr_1}$	
	$= -2\pi (15 \text{ ft})(7.2 \text{ Btu/h} \cdot \text{ft} \cdot \text{°F}) \frac{(160 - 250)^{\circ} \text{F}}{2.4} = 16,800 \text{ Btu/h}$	
	$= -2\pi (15 \text{ ft}) (7.2 \text{ Btu/h} \cdot \text{ft} \cdot \text{°F}) \frac{(160 - 250) \text{°F}}{\ln \frac{2.4}{2} + \frac{7.2 \text{ Btu/h} \cdot \text{ft} \cdot \text{°F}}{(12.5 \text{ Btu/h} \cdot \text{ft}^2 \cdot \text{°F})(2/12 \text{ ft})} = 16,800 \text{ Btu/h}$	
_6	,	
		
	·	
•		
		
-		
·		 -
		·
		•
•		

steady state temperature distribution in a one of thermal conductivity 50 W/mK 50 mm is observed

<

<

meters eat generation rate q in wall?

manner

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional heat flow, (3) Constant properties.

ANALYSIS: (a) The appropriate form of the heat equation for steady-state, one-dimensional conditions with constant properties is Eq. 2.15 re-written as

$$\dot{\mathbf{q}} = -\mathbf{k} \frac{\mathbf{d}}{\mathbf{d}\mathbf{x}} \left[\frac{\mathbf{d}\mathbf{T}}{\mathbf{d}\mathbf{x}} \right]$$

Substituting the prescribed temperature distribution,

$$\dot{q} = -k \frac{d}{dx} \left[\frac{d}{dx} \left(a + bx^2 \right) \right] = -k \frac{d}{dx} \left[2bx \right] = -2bk$$

$$\dot{q} = -2(-2000^{\circ} \text{C/m}^2) \times 50 \text{ W/m} \cdot \text{K} = 2.0 \times 10^5 \text{ W/m}^3$$

(b) The heat fluxes at the wall faces can be evaluated from Fourier's law,

$$q_x''(x) = -k \frac{dT}{dx}\Big]_x$$

Using the temperature distribution T(x) to evaluate the gradient, find

$$q_x''(x) = -k \frac{d}{dx} [a + bx^2] = -2kbx.$$

The fluxes at x = 0 and x = L are then

$$q_X''(0) = 0$$

$$q_x''(L) = -2kbL = -2 \times 50W / m \cdot K(-2000^{\circ}C/m^2) \times 0.050m$$

$$q_x''(L) = 10,000 \text{ W}/\text{m}^2$$
.

COMMENTS: From an overall energy balance on the wall, it follows that, for a unit area,

$$\dot{E}_{in} - \dot{E}_{out} + \dot{E}_{g} = 0 \qquad q''_{x}(0) - q''_{x}(L) + \dot{q}L = 0$$

 $\dot{q} = \frac{q_x''(L) - q_x''(0)}{I} = \frac{10,000 \text{ W/m}^2 - 0}{0.050 \text{m}} = 2.0 \times 10^5 \text{W/m}^3.$

- The temperature distribution across a wall 0.3 m thick at a certain instant of time is $T(x) = a+bx+cx^2$, where T is in degrees Celsius and x is in meters $a=200^{\circ}\text{C}$, $b=-200^{\circ}\text{C/m}$, and $c=30^{\circ}\text{C/m}^2$. The wall has a thermal conductivity of 1 W/mK.
 - (a) On a unit surface area basis, determine the rate of heat transfer into and out of the wall and the rate of change of energy stored by the wall.
 - (b) If the cold surface is exposed to a fluid at 100 °C, what is the convection coefficient?

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in x, (2) Constant k.

ANALYSIS: (a) From Fourier's law,

$$q_X'' = -k \frac{\partial T}{\partial x} = (200 - 60x) \cdot k$$

$$q_{in}'' = q_{x=0}'' = 200 \frac{^{\circ}C}{m} \times 1 \frac{W}{m \cdot K} = 200 \text{ W} / \text{m}^2$$

$$q''_{out} = q''_{x=L} = (200 - 60 \times 0.3)^{\circ} \text{ C/m} \times 1 \text{ W/m} \cdot \text{K} = 182 \text{ W/m}^{2}$$

Applying an energy balance to a control volume about the wall, Eq. 1.11c,

$$\dot{E}_{in}^{\prime\prime}-\dot{E}_{out}^{\prime\prime}=\dot{E}_{st}^{\prime\prime}$$

$$\dot{E}_{st}'' = q_{in}'' - q_{out}'' = 18 \text{ W}/\text{m}^2.$$

(b) Applying a surface energy balance at x = L,

$$q_{out}'' = h[T(L) - T_{\infty}]$$

$$h = \frac{q''_{out}}{T(L) - T_{\infty}} = \frac{182 \text{ W/m}^2}{(142.7 - 100)^{\circ} \text{ C}}$$

$$h = 4.3 \text{ W/m}^2 \cdot \text{K}.$$

COMMENTS: (1) From the heat equation,

$$(\partial T/\partial t) = (k/\rho c_p) \partial^2 T/\partial x^2 = 60(k/\rho c_p),$$

it follows that the temperature is increasing with time at every point in the wall.

