
Lecture 4

User Defined Functions

and

 Files

Getting Help for Functions

You can use the lookfor command to find functions that

are relevant to your application.

For example, type
lookfor imaginary

to get a list of the functions that deal with imaginary

numbers. You will see listed

imag Complex imaginary part

i Imaginary unit

j Imaginary unit

3-2

3-18

3-19
(continued …)

>> x=0:0.1:1;

>> y=f1(x);

>> [x' y']

ans =

 0 0

 0.1000 0.1627

 0.2000 0.2610

 0.3000 0.3099

 0.4000 0.3223

 0.5000 0.3096

 0.6000 0.2807

 0.7000 0.2430

 0.8000 0.2018

 0.9000 0.1610

 1.0000 0.1231

3-20

Example

Write a function to compute area A and

circumference C of a circle given its

radius r as input

function [A,C] = circle(r)

% r-radius of circle

% A-area of circle

% C-circumference of circle

A=pi*r.^2;

C=2*pi*r;

end (continued …)

TEST:

This function is called as follows:

>> clear

>> [A,C]=circle(5)

A =

 78.5398

C =

 31.4159

Example

Write a function that computes a falling

object’s velocity and distance dropped.

Method 1

function[d,v]=drop(t)

%d-distance taveled by falling object (m)

%v-velocity of falling object in (m/sec)

%v0=initial velocity in (m/sec)

% g – acceleration of gravity (m/sec^2);

%t-time in (sec)

% compute velocity of falling object after

t seconds (continued …)

v0=3;

g=9.81;

v=v0+g*t;

% compute the distance covered

by the falling object

d=v0*t+0.5*g*t.^2;

end

TEST

>> [d,v]=drop(5)

d =

 137.6250

v =

 52.0500

Method-2

 The variable names used in the function

definition may, but need not, be used when

 the function is called:

function[d,v]=drop(v0,g,t)

%d-distance taveled by falling object

%v-velocity of falling object

%v0=initial velocity

% g –local acceleration of gravity ;

%t-time in seconds
 (continued

…) 3-27

% compute velocity of falling object

after t seconds

v=v0+g*t;

% compute the distance covered by

the falling object

d=v0*t+0.5*g*t.^2;

end

TEST

 (continued …)

>> v0=3;

>> t=5;

>> g=9.81;

>> [d,v]=drop(v0,g,t)

d =

 137.6250

v =

 52.0500

2. The input variables need not be

assigned values outside the

function prior to the function call:

>> [d,v] = drop(9.81,10,5)

d =

 174.0500

v =

 59.8100

3-32

3. The inputs and outputs may be arrays:

>> t=0:1:4

t =

 0 1 2 3 4

>> [d,v] = drop(9.81,10,t)

d =

 0 14.8100 39.6200 74.4300 119.2400

v =

 9.8100 19.8100 29.8100 39.8100 49.8100

Local Variables

The names of the input variables given in

the function definition line are local to that

function.

This means that other variable names can

be used when you call the function.

All variables inside a function are erased

after the function finishes executing, except

when the same variable names appear in

the output variable list used in the function
call.

Example
3-33

Consider the

function[d,v]=drop(t)

Here d,v,v0,g,t are local variables

to that function. Thay are not

stored in the workspace.

Global Variables

The global command declares certain variables global,

and therefore their values are available to the basic

workspace and to other functions that declare these

variables global.

The syntax to declare the variables a, x, and q is

 global a x q

Any assignment to those variables, in any function or in

the base workspace, is available to all the other functions

declaring them global.

3-34

EXAMPLE

function[d,v]=drop(t)

%d-distance taveled by falling object

(m)

%v-velocity of falling object in (m/sec)

%v0=initial velocity in (m/sec)

% g -acceleration of gravity (/sec^2);

%t-time in (sec)

 global g

 (continued …)

global v0

% compute velocity of falling

object after t seconds

v=v0+g*t;

% compute the distance covered

by the falling object

d=v0*t+0.5*g*t.^2;

end

TEST

 (continued …)

>> clear

>> t=1:1:3;

>> global g

>> g=9.81;

>> global v0

>> v0=10;

>> [d,v]=drop(t)

d =

 14.9050 39.6200 74.1450

v =

 19.8100 29.6200 39.4300

Function Handles

You can create a function handle to any
function by using the at sign, @, before the

function name. You can then use the

handle to reference the function. To create

a handle to the function log(x) , define the

following function :

>> ln=@(x) log(x);

 (continued …)

3-35

The @ symbol alerts MATLAB that

ln is a function

Example

>> ln(10)

ans =

 2.3026

