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See figure on next page 

This means that (a) velocity profile fully developed (b) temperature profile is 

developing and this a thermal entrance problem. 
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Here 
m LMTD

T T    is the logarithmic mean temperature difference and it becomes 



 

 

 

Next step is to evaluate the fluid properties at the mean temperature 
 mi mo

m

T T
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
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and repeat the calculations and compare the new 
mo

T  with the old one. 

 

 

 

 



 

Solution 

From the problem statement that it is clear that this is a combined entrance length 

problem. That velocity and temperature profile are developing together. 

 

 

 

 



 

 

At this point we need another equation. This can be  

1) Hausen Correlation 

This relation can also  be used for combined entry length problem 
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2) Sider and Tate 
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Example 6: 

Water enters a tube with fully developed velocity and uniform temperature 0

mi
T 25 C .The 

inside diameter of the tube is 1.5 cm and its length is 80 cm. The mass flow rate is 0.002 kg/s.It 

is desired to heat the water to 0
75 C  by maintaining the surface at uniform temperature by 

condensing steam on pipe surface. Determine the pipe surface temperature. 
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Thermal entry length 
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fd,h
z L  and flow can be treated fully developed hydrodynamically ( fully developed velocity 

profile).Since  
fd,t

z is comparable to tube length, thermal entrance length must be taken into 

account. 
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From the table we have 

 

 

So we compute average Nusselt number DNu  by interpolation 

DNu =4.681 
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Turbulent Flow 

 

 

Flow is fully turbulent since 
D

Re 10000  . Let us use Gnielinski equation 
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Since the pipe is not a smooth pipe we need the relative roughness of the tube we can use 

Colebrook equation.This equation can be solved using Matlab 2016b command fzero or we can 

use fsolve in Maple 2016. Colebrook equation is given as 
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Note that logarithm in this equation is a base 10!! 

 



Relative roughness is 
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Le us use Maple 2016 
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Example 8: Water flows with a mean velocity of V=2 m/s inside a circular pipe of 

inside diameter D=5 cm. The pipe is smooth pipe and its wall is maintained at a 

uniform temperature 0

w
T 100 C  by condensing steam on its outer surface.  At a 

location where fluid is hydrodynamically and thermally fully developed, the bulk 

temperature of water is 0

m
T 60 C  .Calculate the heat transfer coefficient. 
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1) Gnielnski correlation 
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b) Sider Tate Equation 
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c) the Notter and Sleicher 

For hydrodynamically and thermally fully developed turbulent flow 
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All fluid properties are evaluated at mean temperature  m mi mo
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c) Dittus-Boelter equation  

For hydodynamically and thermally fully developed turbulent flow in a circular smooth 

tube, the  Nusselt number is given by Dittus-Boelter equation 
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